High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872.

نویسندگان

  • D Thomas
  • G Wendt-Nordahl
  • K Röckl
  • E Ficker
  • A M Brown
  • J Kiehn
چکیده

Human ether-a-go-go-related gene (HERG) potassium channels are one primary target for the pharmacological treatment of cardiac arrhythmias by class III antiarrhythmic drugs. These drugs are characterized by high antiarrhythmic efficacy, but they can also initiate life-threatening "torsade de pointes" tachyarrhythmias. Recently, it has been suggested that combining potassium and calcium channel blocking mechanisms reduces the proarrhythmic potential of selective class III antiarrhythmic agents. BRL-32872 is a novel antiarrhythmic drug that inhibits potassium and calcium currents in isolated cardiomyocytes. In our study, we investigated the effects of BRL-32872 on cloned HERG channels heterologously expressed in Xenopus oocytes. Using the two-microelectrode voltage clamp technique, we found that BRL-32872 caused a high-affinity, state-dependent block of open HERG channels (IC(50) = 241 nM) in a frequency-dependent manner with slow unbinding kinetics. Inactivated channels mainly had to open to be blocked by BRL-32872. The HERG S620T mutant channel, which has a strongly reduced degree of inactivation, was 51-fold less sensitive to BRL-32872 block, indicating that BRL-32872 binding was enhanced by the inactivation process. In an additional approach, we studied HERG channels expressed in a human cell line (HEK 293) using the whole-cell patch-clamp technique. BRL-32872 inhibited HERG currents in HEK 293 cells in a dose-dependent manner, with an IC(50) value of 19.8 nM. We conclude that BRL-32872 is a potent blocker of HERG potassium channels, which accounts for the class III antiarrhythmic action of BRL-32872.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The antiarrhythmic drug BRL-32872.

BRL-32872 is a new antiarrhythmic drug with balanced class-III and class-IV actions as categorized by the Vaughan-Williams classification. BRL-32872 blocks the rapid component of the cardiac delayed rectifier potassium channel IK(r) (IC(50) = 28 nM) and its molecular correlate HERG ("Human-ether-a-go-go related gene," IC(50) of 19.8 nM in cell lines) at low concentrations. It also inhibits the ...

متن کامل

Antiarrhythmic drug carvedilol inhibits HERG potassium channels.

OBJECTIVE The aryloxypropanolamine carvedilol is a multiple action cardiovascular drug with blocking effects on alpha-receptors, beta-receptors, Ca(2+)-channels, Na(+)-channels and various native cardiac K(+) channels, thereby prolonging the cardiac action potential. In a number of clinical trials with patients suffering from congestive heart failure, carvedilol appeared to be superior to other...

متن کامل

Molecular determinants of cocaine block of human ether-á-go-go-related gene potassium channels.

The use of cocaine causes cardiac arrhythmias and sudden death. Blockade of the cardiac potassium channel human ether-á-go-go-related gene (hERG) has been implicated as a mechanism for the proarrhythmic action of cocaine. hERG encodes the pore-forming subunits of the rapidly activating delayed rectifier K(+) channel (I(Kr)), which is important for cardiac repolarization. Blockade of I(Kr)/hERG ...

متن کامل

The antipsychotic agent sertindole is a high affinity antagonist of the human cardiac potassium channel HERG.

Acquired long QT syndrome is a side effect seen with some pharmacological agents, including antipsychotic drugs, and is associated with the development of ventricular arrhythmias. This syndrome is often caused by the blockade of repolarizing potassium channels the human heart. A new antipsychotic agent, sertindole, has been shown to produce QT prolongation after therapeutic doses in humans. We ...

متن کامل

The Susceptibilities of Human Ether-à-Go-Go-Related Gene Channel with the G487R Mutation to Arrhythmogenic Factors.

The human ether-à-go-go-related gene (hERG) channel mediates the rapid delayed rectifier potassium current (IKr) responsible for shaping the repolarization phase of cardiac action potentials. hERG mutation may cause hERG channel malfunction, leading to long QT syndrome and other arrhythmic disorders. Elucidation of the genotype-phenotype relationships of individual hERG mutations is key to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2001